
Numerical Mathematics 1: Numerical Analysis

Dr. Zahra Lakdawala1

1Associate Professor of Mathematics, LUMS University,
zahra.lakdawala@lums.edu.pk

These notes have been compiled from various sources.

Abstract

1 Floating Point Arithmetic

1.1 First principle of floating point arithmetic
We usually perceive and understand the world in a discrete way. We define a
quantity such as atoms and molecules as the smallest unit of ordinary matter
in the world. In a similar way, when we deal with discrete notion of the
continuous world in the mathematical world, we need to define the smallest
unit. It is a well-known fact that there are infinitely many real numbers
in the interval [1, 2]. There is no hope to store infinitely many points on a
computer. We rely on the IEEE-754 double precision floating point standard
that approximates the interval [1, 2] by a discrete set of exactly 252 ≈ 4.5.1015

evenly spaced points/numbers, namely

1, 1 + 2−52, 1 + 2.2−52, 1 + 3.2−52, . . . , 2. (1)

The discrete set of numbers that computers use to approximate [1, 2] is un-
believably fine.

1

There are about 2.5.1025 molecules (at sea level) in a cubic meter of
air. This means there are about 109 molecules per metre. However in
a unit interval [1, 2], there are 4.5.1025. This means that computers
work on scale a million times finer than the physical world.

Similarly, the interval [2, 4] is approximated again by 252 points:

2, 2 + 2−51, 2 + 2.2−51, 2 + 3.2−51, . . . , 4.

Thus since the interval length has increased, also gaps have grown. In general,
the interval [2j, 2j+1] is represented by 1 multiplied by 2j .

The advantage of increasing the gaps for larger intervals is that these gaps
are in a relative sense never larger than the so-called machine precision

εmachine = 2−52 ≈ 2.2204 · 10−16

This leads us directly to the first principle of floating point arithmetic.
Suppose we have some real number x ∈ R which is bounded away from±∞ in
such a way that we can approximate it with a finite double precision floating
point number. We obtain this nearest neighbor floating point approximation
denoted with fl(x) via rounding. There are different rounding modes (round
to nearest, up, down, toward zero). The most common method is round to
nearest, which would round 3.5 as well as 4.5 to 4. Assuming this rounding
mode, the IEEE-754 standard guarantees that the relative error between x
and its floating point approximation is always bounded by half of the relative
gaps

|x− fl(x)
x

| ≤ εmachine

2 =: µ

where µ is often referred to as the unit round-off. Equivalently, we can
reformulate the principle to saying there exists some ε with |ε ≤ µ such that

fl(x) = x(1 + ε).

This means that the nearest floating point neighbor of any real number x ∈ R
which is bounded away from the infinities is exact within a factor 1 + ε.

2

1.2 Composition of a floating point number
Let us focus on the internal representation of double precision floating point
numbers. Any double-precision floating point number is represented by

sign.mantissa.2exponent−1023 (2)

It uses 64 bits of computer memory, where the sign occupies one bit, the man-
tissa 52 and the exponent 11 bits. Usually, the sign, mantissa and exponent
are given as binary numbers since this is the natural language of a computer.
However, sometimes to shorted the notation we prefer decimal numbers. To
avoid confusion we use the base as a subindex so that for example

112 = 310 and 1110 = 10112

If the first digit in the mantissa is one, for example

mantissa = 1.111010 . . .

the floating point number is called normalized. Usually one prefers to change
the order of magnitude of the floating point number by adjusting the expo-
nent. However, in order to also be able to represent numbers very close to
zero, one allows denormalized floating pointing number, where the mantissa
begins with a zero,

mantissa = 0.111010 . . .

In any case the digit left of the binary point is not stored separately and
all 52 bits are used for the fractional part of the mantissa. For this reason
it is often referred to as the hidden bit. Since the exponent occupies 11 bits
of memory, two of which are reserved, there are a total of 211 − 2 = 2046
possible values for the exponent. One introduces an offset (or bias) of 1023
to be able to represent small numbers as well. Thus the biased (decimal)
range of the exponent is

−1022,−1021, . . . , 0, 1, . . . , 1023.

The computer stores a floating point number in the order sign, exponent and
mantissa. So for example 1 = 1 · 20 is represented by

0 01111111111 002.

3

The exponent 000000000002 is reserved to represent either a signed zero for
vanishing mantissa = 0 or denormalized numbers for non-vanishing mantissa
6= 0. Furthermore, the exponent 111111111112 is reserved to represent either
the infinities (± inf) for mantissa = 0 or not a number (nan) for mantissa
6= 0. This is quite a useful feature as when writing code

exp(1000), exp(−1000), 0
0 ,

0
∞

result in
inf, 0, nan.

The first output is an example of overflow, the second one an example for
underflow. These exceptions are carefully defined in the IEEE standard.
Since the set of floating point numbers is a finite, there exist smallest/largest
numbers as well as normalized numbers closest to zero. One can easily verify
that these numbers are given by ±1.79769 · 10308 and ±2−1022 ≈ ±2.22507 ·
10−308.

1.3 The second principle of floating point arithmetic
The beauty of the IEEE-754 standard is that it not just properly defines
floating point numbers, rounding modes and exception handling. It also
dictates upper error bounds when using basic arithmetic operations on a
computer. This is leads us to the second principle of floating point arith-
metic. Denote with ⊕,	,�,�, the computer implementations of addition,
subtraction, multiplication and division. It is clear that even if x and y are
representable as exact floating point numbers, this is not necessarily true
for the result of an arithmetic operation. Take 22 + 2−52, for example, which
would be rounded in floating point arithmetic to 4. Hence, the second princi-
ple of floating point arithmetic demands that the computer implementations
shall give the same result as first adding the two floating point numbers x to
y in exact arithmetic and rounding afterwards, i.e.

x⊕ y = fl(x+ y) and x	 y = fl(x− y)
x� y = fl(x · y) and x� y = fl(x/y)

From these properties, we instantly derive the second principle of floating
point arithmetic

x⊗ y = (x ∗ y)(1 + δ)

4

for ” ∈ {+,−, ·, /} and some δ which satisfies |δ| ≤ µ. The second principle
of floating point arithmetic shows that the worst relative error that basic
operations introduce is again on the order of the unit round-off. This is the
best we can hope for. A word of warning: Of course this does not imply that
repeated applications of these operations may not accumulate. For example,
in Python

1e5 ∗ sin(π) = 1.2246467991473532e− 11
Similarly, it is dangerous to subtract numbers of the same size. The result
of the following calculation

1.000000000001− 1 = 1.000088900582341e− 12
is accurate only up to five digits. This loss in precision is called cancella-
tion, which is however not the result of an unstable algorithm but of the
ill-conditioning of the underlying mathematical problem (in this case the
subtraction of numbers which are almost of the same size). It is equally
dangerous to add two numbers of greatly varying size as the calculation

sqrt(1e− 16 + 1)− 1 = 0
demonstrates.

The advantage of the scientific notation(as described in 2) as opposed to
fixed-point notation is obvious. Suppose we use a fixed point notation with
5 integer and 6 fractional digits in decimal arithmetic. Then

π ≈ 00003.141592
π

10000 ≈ 00000.000314
10000π ≈ 31415.926535

showing that the amount of significant digits depends on the order of mag-
nitude of the number.

The interested reader may find a lot more information on floating point
arithmetic in the following books:

• M. Overton. Numerical Computing with IEEE Floating Point Arith-
metic. SIAM, 2001.

• N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
second edition, 2002

Online there are also IEEE calculators which are fun to play around with:
• IEEE-754 Calculator. http://babbage.cs.qc.cuny.edu/IEEE-754/

5

