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1 Wellposeness, conditioning and stability
We discuss three important concepts in numerical analysis which are related
but important to keep apart. While well-posedness and conditioning refer to
the mathematical problem one wants to tackle, stability is a property of the
algorithm one uses to solve the mathematical problem. For example, let us
formalize polynomial root-finding. So the problem is: Given a polynomial
p(x) = ∑n

i=0 aixi (which can be entirely described by its coefficients), find its
roots. The map F given by

F : coefficient vector (an, . . . ., a0)T 7→ vector of all real roots

For example,
F : (1, 2)T 7→ −2

and F : (1, 0, 1)T 7→ {}. Note that the map does not always yield a
solution, since we look for real roots. In the above example, the function F
maps from Rn+1 to Rk, with k ≤ n , depending on the number and algebraic
mutilplicity of (real) roots.

In general, a mathematical problem is not restricted to either Euclidean
spaces or even finite-dimensional ones. For the input and output spaces we
are free to choose any arbitrary normed (function) space such as the space
of polynomials of degree not bigger than n as well as the space of continuous
or integrable functions. So in general, we study a mathematical problem
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F : V 7→ W for some normed real vector spaces V and W . We call V the
input data space and W the output data space. The corresponding norms
are denotes with || · ||V and || · ||W . Thus, F (x) denotes the output from the
mathematical problem F with input x.

1.1 Wellposedness
Hadamard postulated three properties which a mathematical problem should
satisfy in order to accurately describe our physical reality. He called a prob-
lem well-posed

• if there exists a solution to it,

• the solution is unique

• and depends continuously on the input data.

In this sense looking for the roots of x+2 is a well-posed problem whereas
looking for the (real) roots of x2 + 1 is not. If the mathematical problem
cannot be solved, it makes no sense to devise a root-finding algorithm.The
best algorithm in the world is doomed to fail if the problem is ill-posed.

The final property means that if we have two input data sets which are
close then also the mathematical problems should produce similar solutions.
Notice, however, that the word close in this context is a bit vague. Despite its
continuous dependence, it can still be true that varying the input a little bit,
results in a relative large change in the output. The condition number helps
to quantify exactly how large that change is. There are two common types of
condition numbers: The normwise and componentwise condition numbers.

1.2 Condition numbers
1.2.1 Normwise condition number

For some norm given norms || · ||V and || · ||W on the linear spaces V and
W which have to be specified for each application the absolute normwise
condition number κa ≥ 0 is defined as the smallest number such that

||F (x̃− F (x)||W ≤ κa||x̃− x||V (1)

in the limit of x̃ approaching x. Note, that if the mathematical problem
does not depend continuously on the data (i.e. it is ill-posed ) formally the
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condition number becomes infinite, κa = ∞. Similarly, one can define the
relative normwise condition number κr ≥ 0 to be the smallest number such
that

||F (x̃− F (x)||W
||F (x)||W

≤ κr
||x̃− x||V
||x||V

(2)

in the limit of x̃ approaching x. Both κa and κr measure how small perturba-
tions to the input data (e.g. the polynomial coefficients) impact the solution
to the mathematical problem (the roots). That is,

||change in output||W
||output||W

≤ κr
||change in input||V

||input||V
.

In other words the condition numbers describe how sensitive the output is
with respect to the input. If the function F is differentiable, its derivative
help to measure this sensitivity. In fact, we will see below that we can
think of the condition numbers as some generalized derivative. For ”large”
condition numbers the mathematical problem is called ill-conditioned. On
the other hand, for condition numbers close to zero or one, the problem is
called well-conditioned.

We can obtain equivalent definitions for Equations 1 and 2. By setting
∆x = x̃− x we have

κa = lim
ε→0+

sup‖∆x‖V ≤ε
‖F (x+ ∆x)− F (x)‖W

||∆x||V
(3)

and
κr = lim

ε→0+
sup‖∆x‖V ≤ε

‖F (x+ ∆x)− F (x)‖W
||F (x)||W

/
‖∆x‖V
‖x‖V

(4)

From these definitions it become clear that for differentiable F , we obtain

κa = ‖DF (x)‖V,W and κr =
‖DF (x)‖V,W
‖F (x)‖W / ‖x‖V

,

where DF (x) = ∂Fi(x)
∂xj

denotes the Jacobian of F at x and

‖DF (x)‖V,W = sup∆x 6=0

{
‖DF (x)∆x‖W
‖∆x‖V

}

the induced operator norm.
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This looks rather cumbersome. What happens if we simplify the problem
and study some (differentiable) function f : R 7→ R, that is V = W = R?
This case corresponds to studying the conditioning of evaluating the function
f at x. For real numbers the standard norm is the absolute value | · |. In this
case, the Jacobian becomes simply a derivative and the operator norm is its
absolute value,

|f ′(x)|R,R = sup∆x 6=0

{
|f ′(x)∆x|
|∆x|

}
= |f ′(x)|.

Then the absolute and relative condition numbers simplify to

κa = |f ′(x)| and κr =
∣∣∣∣∣f ′(x)x
f(x)

∣∣∣∣∣ .
The above expressions one can also extend to functions defined on finite
domains.

We finish with another example. Polynomial root finding can become
highly ill-conditioned -even ill-posed. Consider the polynomial pε(x) = x2−ε
and its perturbation p(x) = x2 with roots ±

√
ε and double root at x = 0,

respectively. Then the absolute condition number κa according to (2.1) would
need to satisfy in the discrete maximum norm (V = R3 and W = R2), for
example

√
ε =

∥∥∥∥∥
[ √

ε
−
√
ε

]∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥F
 1

0
−ε

− F
1

0
0


∥∥∥∥∥∥∥
∞

≤ Ka

∥∥∥∥∥∥∥
 1

0
−ε

−
1

0
0


∥∥∥∥∥∥∥
∞

= κaε.

For small ε this is impossible since
√
ε dominates ε. Hence, κa =∞.

1.2.2 The condition number of a linear operator

The previously discussed condition numbers have a special form if we make
the additional assumption that the mapping (the operator) F : V 7→ W is
linear, that is for all x, y ∈ V and α, β ∈ R we have

F (αx+ βy) = αF (x) + βF (y)

If we consider the vector space of all linear operators, we can supply it with
the induced operator norm

‖F‖V,W := supx 6=0
‖F (x)‖W
‖x‖V

= sup‖x‖V =1 ‖F (x)‖W .
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We say the linear operator is bounded if ‖F‖V,W < ∞. For bounded linear
operators the operator norm becomes actually a norm as one can easily verify.
From the definition we deduce the important property

‖F (x)‖W ≤ ‖F‖V,W ‖x‖V
for all x ∈ V . From the definition it is clear that ‖F‖V,W is the smallest
constant for which the above inequality holds. Due to linearity we deduce

‖F (x̃)− F (x)‖W = ‖F (x̃− x)‖W ≤ ‖F‖V,W ‖x̃− x‖V
for all x, x̃ ∈ V .

Theorem: Let F : V 7→ W be a linear operator. Then

κa = ‖F‖V,W ∈ [0,∞]

and
κr ≤

‖F‖V,W
inf‖x‖V =1 ‖F (x)‖W

∈ [0,∞].

If F is bijective, we have

κr ≤ ‖F‖V,W
∥∥∥F−1

∥∥∥
W,V

We point out that if the linear operator F is bounded, its absolute condi-
tion number is finite. If it is additionally injective, also its relative condition
number is finite. In other words, for linear operators the operator norm is
equivalent to the absolute condition number. In fact, the following theorem
holds, where we allow the condition numbers to become infinite (indicating
an ill-posed problem.

A word on notation: Matrices are a class of very well known linear opera-
tors. Since it is somewhat unusual to write A(x) for Ax, for linear operators
F we will often drop the parentheses and write Fx instead of F (x).

1.2.3 Componentwise condition number

The previously introduced of normwise condition numbers is sometimes too
restrictive. Consider for example the linear system Ax = b with the diagonal
matrix

A =
[
1 0
0 ε

]
which implies A−1 =

[
1 0
0 1

ε

]
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for ε > 0. Intuitively, solving this linear system with a diagonal matrix
should be well-conditioned since the linear system decouples into two equa-
tions which can be solved separately. However, using the normwise condition
number we have in the discrete maximum norm

κr(A) = ‖A‖∞
∥∥∥A−1

∥∥∥
∞

= 1
ε

So for small ε this type of condition number grows!
If we assume for simplicity that V = Rn and W = Rm, it is instructive

to study the more sensitive componentwise error

Fi(x̃)− Fi(x) = Fi(x+ ∆x)− Fi(x)

for 1 ≤ i ≤ m. If we assume that F is differentiable and apply the mean-value
theorem to the scalar function g(t) = F (x+ t∆x), then we may estimate for
some τ ∈ [0, 1]
∣∣∣∣∣Fi(x+ ∆x)− Fi(x)

Fi(x)

∣∣∣∣∣ = 1
|Fi(x)|

∣∣∣∣∣∣
n∑
j=1

∂Fi(x+ τ∆x)
∂xj

∆xj

∣∣∣∣∣∣
= 1
|Fi(x)|

∣∣∣∣∣∣
n∑
j=1

∂Fi(x+ τ∆x)
∂xj

xj
∆xj
xj

∣∣∣∣∣∣
≤ 1
|Fi(x)|

 n∑
j=1

∣∣∣∣∣∂Fi(x+ τ∆x)
∂xj

∣∣∣∣∣ |xj|
max1≤j≤n

∣∣∣∣∣∆xjxj

∣∣∣∣∣
= |∇Fi(x+ τ∆x)|T |x|

|Fi(x)| max1≤j≤n

∣∣∣∣∣∆xjxj

∣∣∣∣∣ .
In the last expression the absolute value sign is applied componentwise to
the gradient and the vector x. Similar to before, we rearrange this to∣∣∣∣∣Fi(x+ ∆x)− Fi(x)

Fi(x)

∣∣∣∣∣ /max1≤j≤n

∣∣∣∣∣∆xjxj

∣∣∣∣∣ ≤ |∇Fi(x+ τ∆x)|T |x|
|Fi(x)|

where again the absolute value sign is applied componentwise to the Jacobian
and the vector x. If we understand the division componentwise, the right-
hand side becomes ∥∥∥∥∥ |DF (x+ τ∆x)||x|

|F (x)|

∥∥∥∥∥
∞

6



For vanishing ∆x this motivates our definition of the componentwise condi-
tion number

κcr =
∥∥∥∥∥ |DF (x)||x|
|F (x)|

∥∥∥∥∥
∞
.

Let us compute the componentwise condition number for the linear system
in the introductory example. In this case

κcr =

∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣
[
1 0
0 ε

]∣∣∣∣∣
∣∣∣∣∣
[
x1
x2

]∣∣∣∣∣∣∣∣∣∣
[
1 0
0 ε

] [
x1
x2

]∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥

[
|x1|
ε|x2|

]
∣∣∣∣∣
[
x1
x2

]∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥
∞

= max

{
|x1|
|x1|

,
|x2|
|x2|

}
= 1

So the componentwise condition number is actually ideal, reflecting our initial
intuition.

Let us look at another example. Consider the multiplication of two real
numbers, defined by

f : R2 7→ R, f(x, y) = xy.

The Jacobian is given by

Df(x, y) =
[
y x

]
.

Hence, the normwise condition number in the discrete maximum norm yields

κr =
‖Df(x, y)‖∞

∥∥∥∥∥
[
x
y

]∥∥∥∥∥
∞

|f(x, y)| = (|x|+ |y|)max{|x|, |y|}
|xy|

=

|x|2+|x||y|
|xy| = |x|

|y| + 1, for |x| > |y|
|y|2+|x||y|
|xy| = |y|

|x| + 1, for |x| ≤ |y|

This means that the normwise condition number implies that multiplication
is only well defined if |x| ≈ |y|. However, if the absolute values of both factors
differ by a lot, then the normwise condition number becomes large. On the
other hand, the componentwise condition number is given by

κcr =
∥∥∥∥∥|Df(x)|

∣∣∣∣∣
[
x
y

]∣∣∣∣∣ /|f(x, y)|
∥∥∥∥∥
∞

= 2|x||y|
|xy|

= 2

implying that in the componentwise sense multiplication is well-conditioned
regardless of the magnitude of x and y.
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Figure 1: Comparison between relative output error over relative input error
for multiplication xy with x = 3 and ε1 = ε2 = 10−8, using normwise (green)
and componentwise (orange) errors

So which condition number mirrors the ”correct” behavior? Suppose we
perturb some x, y ∈ R of possibly quite different magnitudes by x̃ = x(1+ε1)
and ỹ = y(1 + ε2) for some ε1, ε2 ∈ R. Then the output error is given by

xy − x̃ỹ
xy

= ε1 + ε2 + ε1ε2 = x̃− x
x

+ ỹ − y
y

+ x̃− x
x

ỹ − y
y

This means that the multiplication error is directly bounded by the errors in
the input, independently from any size difference between x and y. So the
componentwise condition number wins. Figure 1 demonstrates that even the
componentwise condition number could be improved to accurately reflect the
ratio of relative output to relative input error.

Even though the componentwise condition number is a very precise tool,
in practice it might be more difficult to compute than the normwise condition
number.

1.3 Stability
Well-posedness and the condition number(s) only apply to the mathematical
problem. When solving the mathematical problem numerically on a com-
puter, we need to be aware that due to floating point arithmetic rounding
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errors are introduced. For example, the irrational number π is represented
in double precision by these 16 digits:

3.141592653589793

Again, the question is how does the algorithm propagate these rounding
errors? This is addressed by the concept of stability. There are several
different concept of stability. We focus on one concept related to the error
in the output and one related to the error in the input.

Analogously, to the mathematical problem, we will denote the algorithm
with F̃ : V 7→ W , i.e. another map between the same input and output
space as for the mathematical problem.

The absolute and relative forward errors are defined by

∥∥∥F (x)− F̃ (x)
∥∥∥
W

and

∥∥∥F (x)− F̃ (x)
∥∥∥
W

‖F (x)‖W

respectively.

The absolute and relative backward errors are defined by

β and β

‖x‖V

where β = inf{‖x− x̃‖V |F̃ (x) = F (x̃)}

The backward error is the error between the original input x and some
perturbed input x̃. This perturbation is determined by asking which per-
turbed input one needs to supply to the exact problem to obtain the same
output like the algorithm. This question can possibly not be answered in a
unique way. Hence, we take the infimum of all such possible input errors.

Now an algorithm is called forward stable if the forward error divided
by the condition number is ”small”. It is called backward stable if the
backward error is small for all inputs x.
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Key takeaway:
While well-posedness and the condition number relates to the underly-
ing mathematical problem (and are thus independent from the numer-
ical methods ones uses to solve it), stability is inherent to the choice
of the algorithm.
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